Поиск по этому блогу

среда, 14 ноября 2012 г.

Итоги диагностической работы по математике

В рамках мероприятий проекта "Анализ результатов государственной (итоговой) аттестации" в сентябре-октябре месяцах была проведена диагностическая работа по математике. Целей  данной работы было несколько. Во-первых, актуализация некоторых тем. Во-вторых, учитель сам видит проблемные зоны. В-третьих, мы видим работу учителя, через его анализ. В диагностическую работу вошли наиболее проблемные задания части В единого государственного экзамена. Все шесть заданий были взяты из открытого банка задач ЕГЭ по математике. На работу отводилось 45 минут. Учитель сам осуществлял проверку и делал анализ работ учеников 11 класса. Мы получили результаты 20 школ. Писали работу более 160 человек, учащиеся малокомплектных сельских школ.

В диагностическую работу вошли следующие типы заданий:

  1. Вычислительное
  2. Исследование графика
  3. Нахождение площади
  4. Физическая
  5. На  движение
  6. Наибольшее и наименьшее значение функции.
С первыми двумя типами заданий справилось более 70% участников. С третьим  - чуть более 50%. Остальные задания - менее 50%.  Допускаю, что не хватило времени. И все же, именно задания физический направленности и задачи на движение всегда вызывают затруднения.

Что делать? Больше решать! )) И не только на математике, на физике тоже. 

Примеры заданий для тренировки

  • При температуре 0^\circ {\rm{C}} рельс имеет длину l_0 =10 м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону l(t^\circ ) = l_0 (1 + \alpha  \cdot t^\circ ), где \alpha= 1,2\cdot 10^{ - 5}(^\circ {\rm{C}})^{-1}  — коэффициент теплового расширения, t^\circ  — температура (в градусах Цельсия). При какой температуре рельс удлинится на 3 мм? Ответ выразите в градусах Цельсия.
  • Высота над землeй подброшенного вверх мяча меняется по закону h(t)=1,6 + 8t - 5t^2 , где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трeх метров?
  • Если достаточно быстро вращать ведeрко с водой на верeвке в вертикальной плоскости, то вода не будет выливаться. При вращении ведeрка сила давления воды на дно не остаeтся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила еe давления на дно будет положительной во всех точках траектории кроме верхней, где она может быть равной нулю. В верхней точке сила давления, выраженная в ньютонах, равнаP= m\left( {\frac{{v^2 }}{L} - g} \right), где m — масса воды в килограммах, v — скорость движения ведeрка в м/с, L — длина верeвки в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). С какой наименьшей скоростью надо вращать ведeрко, чтобы вода не выливалась, если длина верeвки равна 40 см? Ответ выразите в м/с.
  • В боковой стенке высокого цилиндрического бака у самого дна закреплeн кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нeм, выраженная в метрах, меняется по закону H(t) = H_0-\sqrt {2gH_0 } kt + \frac{g}{2}k^2 t^2, гдеt — время в секундах, прошедшее с момента открытия крана, H_0=20 м — начальная высота столба воды, k = \frac{1}{{50}} — отношение площадей поперечных сечений крана и бака, а g — ускорение свободного падения (считайте g=10 м/с{}^2). Через сколько секунд после открытия крана в баке останется четверть первоначального объeма воды?
  • Камнеметательная машина выстреливает камни под некоторым острым углом к горизонту. Траектория полeта камня описывается формулой y = ax^2  + bx, где a = - \frac{1}{{100}}  м{}^{ - 1}b=1 — постоянные параметры, x (м) — смещение камня по горизонтали, y (м) — высота камня над землeй. На каком наибольшем расстоянии (в метрах) от крепостной стены высотой 8 м нужно расположить машину, чтобы камни пролетали над стеной на высоте не менее 1 метра?
  • Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
  • Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути — со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.
  • Два велосипедиста одновременно отправились в 240-километровый пробег. Первый ехал со скоростью, на 1 км/ч большей, чем скорость второго, и прибыл к финишу на 1 час раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.
  • Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.
  • Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.
  • От пристани А к пристани В, расстояние между которыми равно 420 км, отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним, со скоростью на 1 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Комментариев нет:

Отправить комментарий